int st[N]; int primes[N], idx = 0; voidsieve(int n = N - 5) { memset(st, 1, sizeof(st)); st[1] = st[0] = 0; for (int i = 2; i <= n; i++) { if (st[i]) primes[idx++] = i; for (int j = 0; i * primes[j] <= n; j++) { st[i * primes[j]] = false; if (i % primes[j] == 0) break; } } }
int c[N]; for (int i = 0; i < idx; i++) { int s = n, p = primes[i]; while (s) { c[i] += s / p; s /= p; } }
组合数
1 2 3 4 5 6 7 8 9 10
constint N, MOD; int c[N][N]; intget_cab(int a, int b) { if (c[a][b] != -1) return c[a][b]; if (b == 0 || a == b) return c[a][b] = 1; return c[a][b] = (get_cab(a - 1, b) + get_cab(a - 1, b - 1)) % MOD; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
using ll = longlong; constint N, MOD; int fact[N]; int infact[N]; voidinit() { fact[0] = infact[0] = 1; for (int i = 1; i < N; i++) { fact[i] = (ll)fact[i - 1] * i % MOD; infact[i] = (ll) } } intget_cab(int a,int b) {
constint N; constdouble eps = 1e-6; int n; double a[N][N];
intgauss() { int c, r; for (c = 0, r = 0; c < n; c++) // 枚举每一列 { int t = r; for (int i = r; i < n; i++) // 找到绝对值最大的一行 if (fabs(a[i][c]) > fabs(a[t][c])) t = i;
if (fabs(a[t][c]) < eps) // 如果最大值是0, 忽略这一行 continue;
for (int i = c; i < n + 1; i++) // 把这一行换到最上面 swap(a[t][i], a[r][i]);
for (int i = n; i >= c; i--) //将第一个数变成1 a[r][i] /= a[r][c];
for (int i = r + 1; i < n; i++) //将下面所有行的第c列清零 if (fabs(a[i][c]) > eps) for (int j = n; j >= c; j--) a[i][j] -= a[r][j] * a[i][c]; r++; }
if (r < n) { for (int i = r; i < n; i++) if (fabs(a[i][n]) > eps) return2; // 无解 return1; // 无穷多解 }
for (int i = n - 1; i >= 0; i--) for (int j = i + 1; j < n; j++) a[i][n] -= a[i][j] * a[j][n];