classSolution { public: staticconstint N = 1010, MOD = 1e9 + 7; int f[N][N];
Solution() { memset(f, -1, sizeof(f)); } intget(int a, int b) { if (f[a][b] != -1) return f[a][b]; if (a == 0) return f[0][b] = 1; if (b == 1) return f[a][1] = 1; return f[a][b] = (get(a - 1, b) + get(a, b - 1)) % MOD; }
intsolve(vector<int> &nums) { if (nums.size() == 0) return1; if (nums.size() == 1) return1; vector<int> left, right; int mid = nums[0]; for (int i = 1; i < nums.size(); i++) { if (nums[i] < mid) left.push_back(nums[i]); else right.push_back(nums[i]); } int res = (longlong)solve(left) * solve(right) % MOD; res = (longlong)res * get(left.size(), right.size() + 1) % MOD; return res; } intnumOfWays(vector<int> &nums){ return (solve(nums) - 1 + MOD) % MOD; } };
1 2
Runtime: 215 ms, faster than 71.36% of C++ online submissions for Number of Ways to Reorder Array to Get Same BST. Memory Usage: 45.7 MB, less than 66.02% of C++ online submissions for Number of Ways to Reorder Array to Get Same BST.
classSolution { public: staticconstint N = 3e4 + 10;
int n; int tr[N];
voidadd(int x, int v)// 位置 x 加 v { for (; x <= n; x += x & -x) tr[x] += v; }
intsum(int x)// 1~x 前缀和 { int sum = 0; for (; x >= 1; x -= x & -x) sum += tr[x]; return sum; }
string minInteger(string num, int k) { n = num.length(); num = " " + num; list<int> li[10]; // 保存了0~9的所有出现位置 for (int i = 1; i <= n; i++) li[num[i] - '0'].push_back(i); string res = ""; for (int i = 1; i <= n; i++) { for (int j = 0; j <= 9; j++) { if (li[j].size() && li[j].front() + (sum(n) - sum(li[j].front())) - i <= k) { k -= (li[j].front() + (sum(n) - sum(li[j].front())) - i); add(li[j].front(), 1); li[j].pop_front(); res.push_back(j + '0'); break; } } } return res; } };
1 2
Runtime: 128 ms, faster than 61.90% of C++ online submissions for Minimum Possible Integer After at Most K Adjacent Swaps On Digits. Memory Usage: 17.8 MB, less than 26.19% of C++ online submissions for Minimum Possible Integer After at Most K Adjacent Swaps On Digits.
classSolution { public: staticconstint N = 1e4 + 10, MOD = 1e9 + 7; int fact[N]; int infact[N]; int f[20][N];
intqmi(int x, int n) { int res = 1; while (n) { if (n & 1) res = (longlong)res * x % MOD; x = (longlong)x * x % MOD; n >>= 1; } return res; }
intCab(int a, int b) { return (longlong)fact[a] * infact[a - b] % MOD * infact[b] % MOD; }
intidealArrays(int n, int maxValue) { fact[0] = infact[0] = fact[1] = infact[1] = 1; for (int i = 2; i <= n; i++) { fact[i] = (longlong)fact[i - 1] * i % MOD; infact[i] = (longlong)infact[i - 1] * qmi(i, MOD - 2) % MOD; } int res = 0; for (int i = 1; i <= maxValue; i++) f[1][i] = 1;
for (int i = 1; i < 18; i++) { for (int j = 1; j <= maxValue; j++) { for (int k = 2 * j; k <= maxValue; k += j) f[i + 1][k] = (f[i + 1][k] + f[i][j]) % MOD; if (i <= n) res = (res + (longlong)f[i][j] * Cab(n - 1, i - 1)) % MOD; } } return res; } };
1 2
Runtime: 151 ms, faster than 84.07% of C++ online submissions for Count the Number of Ideal Arrays. Memory Usage: 6.9 MB, less than 92.04% of C++ online submissions for Count the Number of Ideal Arrays.